Síntese de ácidos graxos livres do óleo de caroço de algodão

Djéssica Tatiane Raspe, Camila da Silva, Ana Paula Guerra, Ana Claudia Santos da Rosa

Resumo


DOI

 

R E S U M O

 

Vislumbrando obter um hidrolisado com elevados percentuais de ácidos graxos livres (AGLs), o presente trabalho teve como objetivo explorar a hidrólise enzimática do óleo de caroço de algodão (OCA). Diferentes pré-tratamentos para purificação do óleo foram propostos, dos quais a lavagem com água aquecida à 80 ºC resultou em apreciáveis 52,2% de AGLs, sendo esta etapa fixada para a condução das posteriores. O efeito das variáveis do processo (percentual de água, pH da solução tampão e percentual de catalisador) foi avaliado sequencialmente, por meio dos catalisadores enzimáticos Lipozyme® RM IM e Lipozyme® TL IM. O aumento do percentual de água (5-100% em relação à massa de óleo) e pH da solução tampão (5,7-8,2) no meio reacional foi proporcional ao aumento da formação de AGL para ambas as enzimas avaliadas, com destaque para a Lipozyme® TL IM. Ao analisar a influência do catalisador (1-15%), pode-se constatar que menores percentuais (5%) promoveram a formação de maiores teores de AGLs (~83%). Após efeito das variáveis, na faixa experimental considerada, ~83% de AGLs foram obtidos utilizando 50% de solução tampão à pH 8,2 e 5% de enzima Lipozyme® TL IM, durante 6 horas de reação à 55 ºC e 400 rpm.

 

Palavras-Chaves: Catálise enzimática, Hidrólise, Variáveis experimentais.

 

Synthesis of free fatty acids of cotton seed oil

 

A B S T R A C T

 

Seeking to obtain a hydrolyzate with high percentages of free fatty acids (FFA), the present work aimed to explore the enzymatic hydrolysis of cottonseed oil (OCA). Different pretreatments for oil purification were proposed, of which washing with water heated to 80 ºC resulted in appreciable 52.2% of FFAs, this stage being fixed for the conduction of the latter. The effect of the process variables (water percentage, buffer pH and percentage of catalyst) was evaluated sequentially through the enzymatic catalysts Lipozyme® RM IM and Lipozyme® TL IM. The increase in the percentage of water (5-100% in relation to the oil mass) and pH of the buffer solution (5.7-8.2) in the reaction medium was proportional to the increase of FFA formation for both enzymes evaluated, with emphasis on Lipozyme® TL IM. When analyzing the influence of the catalyst (1-15%), it can be seen that lower percentages (5%) promoted the formation of higher levels of AGLs (~83%). After effect of the variables, in the experimental range considered, ~83% of FFAs were obtained using 50% buffer solution at pH 8.2 and 5% Lipozyme® TL IM enzyme, during 6 hours of reaction at 55 ºC and 400 rpm.

 

Keywords: Enzymatic catalysis, Hydrolysis, Experimental variables.


Palavras-chave


Catálise enzimática, Hidrólise, Variáveis experimentais.

Texto completo:

PDF (Português)

Referências


ABRAPA – Associação Brasileira dos Produtores de Algodão (2017). A cadeia do Algodão Brasileiro - Safra 2016/2017: Desafios e Estratégias. Brasília, Distrito Federal. Disponível em: https://www.abrapa.com.br/BibliotecaInstitucional/A%20Cadeia%20do%20Algoda%CC%83o%20Brasileiro%202016-2017.pdf. Acesso em: 10/11/2021.

Alves, J. S., Vieira, N., Cunha, A. S., Silva, A. M., Ayub, M. A. Z., Fernandez-Lafuente, R., Rodrigues, R. C. (2014). Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. The Royal Society of Chemistry, 4, 6863-6868.

AOCS – American Oil Chemists’ society (1998). Official methods and recommended practices (4a ed.). Champaign, 1998.

ANP – Associação Nacional do Petróleo (2020). Percentual das matérias-primas utilizadas para produção de biodiesel. Disponível em: https://www.gov.br/anp/pt-br/assuntos/producao-e-fornecimento-de-biocombustiveis/biodiesel/if/im-2020/processamento-materias-primas-2020.xlsx. Acesso em: 10/11/2021.

Antoni, D., Zverlov, V. V., Schwarz, W. H. (2007). Biofuels from microbes. Applied Microbiology and Biotechnology, 77(1), 23-35.

Batistella, L., Ustra, M. K., Richetti, A., Pergher, S. B. C., Treichel, H., Oliveira, J. V., Lerin, L., Oliveira, D. (2012). Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation. Journal Bioprocess and Biosystems Engineering, 35(3), 351-358.

Brennan, L., Owender, P. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extrations of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557-577.

Bressani, A. P., Garcia, K. C. A., Hirata, D. B., Mendes, A. A. (2015). Production of alkyl esters from macaw palm oil by a sequential hydrolysis/esterification process using heterogeneous biocatalysts: optimization by response surface methodology. Bioprocess and Biosystems Engineering, 38(2), 287-297.

Canakci, M. (2007). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology, 98(1), 183-190.

Cavalcanti-Oliveira, E. A., Silva, P. R., Ramos, A. P., Aranda, D. A. G., Freire, D. M. G. (2011). Study of Soybean Oil Hydrolysis Catalyzed by Thermomyces lanuginosus Lipase and Its Application to Biodiesel Production via Hydroesterification. Research Article, 2011(1), 1-8.

Chattopadhyay, S., Karemore, A., Das, S., Deysarkar, A., Sen, R. (2011). Biocatalytic production of biodiesel from cottonseed oil: Standardization of process parameters and comparison of fuel characteristics. Applied Energy, 88(4), 1251-1256.

Chua, L. S., Alitabarimansor, M., Lee, C. T., Mat, R. (2012). Hydrolysis of Virgin Coconut Oil Using Immobilized Lipase in a Batch Reactor. Enzyme Research, 2012, 1-5, 2012.

CONAB – Companhia Nacional de Abastecimento. Perspectivas para a Agropecuária – Safra 2018/2019. ISSN 2318-3241, Brasília, Agosto, 6, 1-112.

CONAB – Companhia Nacional de Abastecimento (2019). Perspectivas para a Agropecuária, Safra 2019/2020. ISSN 2318-3241, Brasília, Outubro, 7, 1-100.

Conceição, R. C., Frasão, C. V., Silva, S. M. C., Medeiros, J. L., Araújo, O. Q. F., Picardo, M. C. (2012). Caracterização composicional e Transesterificação de óleo de microalga: uma abordagem computacional. Química Nova, 35(7), 1336-1342.

Doukyu, N., Ogino, H. (2010). Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 48(3), 270-282.

Durrett, T. P., Benning C., Ohlrogge, J. (2008). Plant triacylglycerols as feedstocks for the production of biofuels. Plant Journal, 54(4), 593-607.

Gomori, G. (1955). Preparation of buffers for use in enzyme studies, in methods in enzymology. Academic Press Inc.: New York, 1.

Goswami, D., Basu, J., De, S. (2009). Optimization of process variables in castor oil hydrolysis by Candida rugosa lipase with buffer as dispersion medium. Biotechnology and Bioprocess Engineering, 14(2), 220-224.

Jarjes, Z. A., Mohammed, R. S., Sulaiman, A. G. (2012). Bio-electrode in Mechanistic Study of Lipoxygenase with Fatty Acids from Cooking Palm Oil. The Open Electrochemistry Journal, 4(1), 13-19.

Jiang, Y., Guo, C., Gao, H., Xia, H., Mahmood, I., Liu, C., Liu, H. (2012). Lipase Immobilization on Ionic Liquid Modified Magnetic Nanoparticles: Ionic liquids Controlled Esters Hydrolysis at Oil–Water Interface. American Institute of Chemical Engineers Journal, 58(4), 1203-1211.

Khaskheli, A. A., Talpur, F. N., Ashraf, M. A., Cebeci, A., Jawaid, S., Afridi, H. I. (2015). Monitoring the Rhizopus oryzae lipase catalyzed hydrolysis of castor oil by ATR-FTIR spectroscopy. Journal of Molecular Catalysis B: Enzymatic, 113, 56-61.

Kulkarni, S. R., Pandit, A. B. (2005). Enzymatic hydrolysis of castor oil: An approach for rate enhancement and enzyme economy. Indian Journal of Biotechnology, 4(2), 241-245.

Leung, D. Y. C., Wu, X., Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095.

Mahdavi, V., Monajemi, A. (2014). Optimization of operational conditions for biodiesel production from cottonseed oil on CaO–MgO/Al2O3 solid base catalysts. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2286-2292.

Meher, L. C., Sagar, D. V., Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification: A review. Renewable and Sustainable Energy, 10(3), 248-268.

Mello, B. T. F., Rodrigues, G. M., Silva, C. (2015). Hidrólise enzimática do óleo de crambe (Crambe abyssinica H.) assistida por ultrassom. E-xacta, 8(1), 77-85.

Meng, Y., Wang, G., Yang, N., Zhou, Z., Li, Y., Liang, X., Chen, J., Li, Y., Li, J. (2011). Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase. Biotechnology for Biofuels, 4(6), 1-9.

MME – Ministério de Minas e Energia (2004). Biodiesel - o Novo Combustível do Brasil. Programa Nacional de Produção e Uso de Biodiesel. Brasília, Distrito Federal, Fevereiro. Disponível em: https://bd.camara.leg.br/bd/bitstream/handle/bdcamara/1141/biodiesel_combustivel_lima.pdf?sequence=1&isAllowed=y. Acesso em: 13/11/2021.

Mujeli, M., Kefas, H. M., Shitu, A., Ayuba, I. (2016). Optimization of Biodiesel Production from Crude Cotton Seed Oil Using Central Composite Design. American Journal of Chemical and Biochemical Engineering, 1(1), 8-14.

Mulinari, J., Venturin, B., Sbardelotto, M., Dall Agnol, A., Scapini, T., Camargo, A. F., Baldissarelli, D. P. Modkovski, T. A., Rossetto, V., Dalla Rosa, C., Reichert Jr, F. W., Golunski, S. M., Vieitez, I., Vargas, G. D. L. P., Dalla Rosa, C., Mossi, A. J., Treichel, H. (2017). Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases. Ultrasonics Sonochemistry, 35, 313-318.

Nabi, N., Rahman, M., Akhter, S. (2009). Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Applied Thermal Engineering, 29(11-12), 2265-2270.

PBB – Portal Biodiesel Brasil (2019). O que é biodiesel? Brasil, Novembro. Disponível em: https://www.biodieselbr.com/biodiesel/definicao/o-que-e-biodiesel#:~:text=O%20biodiesel%20%C3%A9%20um%20combust%C3%ADvel,%C3%A9%20um%20substituto%20do%20diesel. Acesso em: 13/11/2021.

Pradana, S. Y., Fauzi, A., Pratama, S. H., Sudibyo, H. (2018). Simulation of biodiesel production using hydro-esterification process from wet microalgae. MATEC Web of Conferences, 154, 1-5.

Raspe, D. T., Cardozo-Filho, L., Silva, C. (2013). Effect of additives and process variables on enzymatic hydrolysis of macauba kernel oil (Acrocomia aculeata). International Journal Chemical Engineering, 2013, 1-8.

Raizer, E., Molinari, D., Reinehr, T. O., Fetsch, V. T., Awadallak, J. A., Silva, C., Silva, E. A. (2015). Produção de ácidos graxos livres através de hidrólise enzimática do óleo de girassol em ultrassom. Revista Tecnológica, 63-71.

Reis, P., Holmberg, K., Watzke, H., Leser, M. E., Miller, R. (2009). Lipases at interfaces: a review. Advances in Colloid and Interface Science, 147-148, 237-250.

Rooney, D., Weatherly, L. R. (2001). The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid-liquid reactor. Process Biochemistry, 36(10), 947-953.

Rosset, D. V., Wancura, J. H. C., Ugalde, G. A., Oliveira, J. V., Tres, M. V., Kuhn, R. C., Jahn, S. L. (2019). Enzyme-Catalyzed Production of FAME by Hydroesterification of Soybean Oil Using the Novel Soluble Lipase NS 40116. Applied Biochemistry and Biotechnology, 188, 914-926.

Serri, N. A., Kamarudin, A. H., Rahaman, S. N. A. (2008). Preliminary Studies for Production of Fatty Acids from Hydrolysis of Cooking Palm Oil Using C. rugosa Lipase. Journal of Physical Science, 19(1), 79-88.

Sheldon, R. A., Woodley, J. M. (2018). Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 118, 801−838.

Silva, C., Trentini, C. P. (2013). Produção de Ésteres de Ácidos Graxos a partir do Óleo de Caroço de Algodão em duas etapas reacionais. Engevista, 3, 235-242.

Souza, G. K., Scheufele, F. B., Pasa, T. L. B., Arroyo, P. A., Pereira, N. C. (2016). Synthesis of ethyl esters from crude macauba oil (Acrocomia aculeata) for biodiesel production. Fuel, 165, 360-366.

Talukder, M. M. R., Wu, J. C., Fen, N. M., Melissa, Y. L. S. (2010). Two-step lipase catalysis for production of biodiesel. Biochemical Engineering Journal, 49(2), 207-212.

Tavares, G. R., Gonçalves, J. E., Santos, W. D., Silva, C. (2017). Enzymatic interesterification of crambe oil assisted by ultrasound. Industrial Crops & Products, 97, 218-223.

Tavares, F., Petry, J., Sackser, P. R., Borba, C. E., Silva, E. A. (2018). Use of castor bean seeds as lipase source for hydrolysis of crambe oil. Industrial Crops & Products, 124, 254-264.

Trentini, C. P., Raspe, D. T., Silva, C. (2014). Obtenção de ácidos graxos livres do óleo de macaúba (Acrocomia aculeata) em sistema livre de solvente orgânico. Semina, 35(1), 15-24.

Vescovi, V., Rojas, M. J., Baraldo Jr, A., Botta, D. C., Santana, F. A. M., Costa, J. P., Machado, M. S., Honda, V. K., Giordano, R. L. C., Tardioli, P. W. (2016). Lipase Catalyzed Production of Biodiesel by Hydrolysis of Waste Cooking Oil Followed by Esterification of Free Fatty Acids. Journal of the American Oil Chemists' Society, 93(12), 1615-1624.

Vyas, A. P., Verma, J. L., Subrahmanyam, N. (2010). A review on FAME production processes. Fuel, 89, 1-9.

Zenevicz, M. C., Jacques, A., Oliveira, D., Furigo Jr, A., Valério, A., Oliveira, J. V. (2017). A two-step enzymatic strategy to produce ethyl esters using frying oil as substrate. Industrial Crops and Products, 108, 52-55.

You, L. L., Baharin, B. S. (2006). Effects of enzymatic hydrolysis on crude palm olein by lipase from Candida rugosa. Journal of Food Lipids, 13(1), 73-87.


Apontamentos



Direitos autorais 2022 Djéssica Tatiane Raspe, Camila da Silva, Ana Paula Guerra, Ana Claudia Santos da Rosa

Revista Brasileira de Meio Ambiente (Rev. Bras. Meio Ambiente) | ISSN: 2595-4431

CC-BY 4.0 Revista sob Licença Creative Commons
Language/Idioma
02bandeira-eua01bandeira-ingla
03bandeira-spn