Revista Brasileira de Meio Ambiente

Periódico de Acesso Aberto

CiteScore

0.5

Indexada na
SCOPUS

QUALIS

B3

2017-2021
quadriênio

Idioma

Revista Brasileira de Meio Ambiente

e-ISSN: 2595-4431


Resumo

Um dos parâmetros mais importantes da qualidade da praia é a qualidade da água. Sua relevância depende de estratégias de amostragem e métodos analíticos sendo bem implantados e os dados resultantes sendo transformados em informações de qualidade para os tomadores de decisão e todas as partes interessadas. A presente revisão examina os métodos laboratoriais, os indicadores utilizados e mais alguns parâmetros relacionados a avaliação de qualidade de águas balneares. O objetivo principal é desenvolver uma visão crítica do processo que possa ajudar a entender seu potencial, melhor planejamento de novos programas e a autocrítica dos existentes, a fim de que os gestores planejem formas de melhorar sua contribuição para a segurança pública e ambiental na zona costeira. O parâmetro mais estudado para avaliar a qualidade das águas é a quantificação de bactérias e os trabalhos apresentam a maioria dos dados primários. Internacionalmente, duas metodologias de bancada predominam (membrana filtrante e substratos). As análises de dados levam em consideração as coletas e muitas delas foram voltadas para o desenvolvimento de técnicas de predição de padrões. Os requisitos necessários para garantir em segurança a utilização das águas balneares passam não só pelos acessos, infraestruturas e segurança, mas principalmente pela qualidade da água.

Referências

  • Alm, E.W.; Daniels-Witt, Q.R.; Learman, D.R.; Ryu, H.; Jordan, D.W.; Gehring, T.M. & Santo Domingo, J. (2018). Potential for gulls to transport bacteria from human waste sites to beaches. Science of The Total Environment, 615, 123–130.
  • Aragonés, L.; López, I.; Palazón, A.; López-Úbeda, R. & García, C. (2016). Evaluation of the quality of coastal bathing waters in Spain through fecal bacteria Escherichia coli and Enterococcus. Science of The Total Environment, 566–567, 288–297.
  • Aranda, D.; Lopez, J.V.; Solo-Gabriele, H.M. & Fleisher, J.M. (2016). Using probabilities of enterococci exceedance and logistic regression to evaluate long term weekly beach monitoring data. Journal of Water and Health, 14(1), 81–89.
  • Araújo, M. C. B. & Costa, M. F. (2008). Environmental quality indicators for recreational beaches classification. Journal of Coastal Research, 24(6), 1439–1449.
  • Bae, H.-K. (2018). The Modelling Approach for Predicting Coastal Pollutions using Rainfall Distributions over Different Land Use/Land Cover. Journal of Coastal Research, 85, 11–15.
  • Bedri, Z.; O’Sullivan, J.J.; Deering, L.A.; Demeter, K.; Masterson, B.; Meijer, W.G. & O’Hare, G. (2015). Assessing the water quality response to an alternative sewage disposal strategy at bathing sites on the east coast of Ireland. Marine Pollution Bulletin, 91(1), 330–346.
  • Betancourt, W.Q.; Duarte, D.C.; Vásquez, R.C. & Gurian, P.L. (2014). Cryptosporidium and Giardia in tropical recreational marine waters contaminated with domestic sewage: Estimation of bathing-associated disease risks. Marine Pollution Bulletin, 85(1), 268–273.
  • Buer, A.-L.; Gyraite, G.; Wegener, P.; Lange, X.; Katarzyte, M.; Hauk, G. & Schernewski, G. (2018). Long term development of Bathing Water Quality at the German Baltic coast: spatial patterns, problems and model simulations. Marine Pollution Bulletin, 135, 1055–1066.
  • Byappanahalli, M.N.; Nevers, M.B.; Whitman, R.L.; Ge, Z.; Shively, D.; Spoljaric, A. & Przybyla-Kelly, K. (2015). Wildlife, urban inputs, and landscape configuration are responsible for degraded swimming water quality at an embayed beach. Journal of Great Lakes Research, 41(1), 156–163.
  • Ceballos, B. S. O. & Diniz, C. R. (2017). Técnicas de Microbiologia Sanitária e Ambiental. Campina Grande: EDUEPB.
  • Cheung, P.K.; Yuen, K.L.; Li, P.F.; Lau, W.H.; Chiu, C.M.; Yuen, S.W. & Baker, D.M. (2015). To swim or not to swim? A disagreement between microbial indicators on beach water quality assessment in Hong Kong. Marine Pollution Bulletin, 101(1), 53–60.
  • Cloutier, D. D.; Alm, E. W. & Mclellan, S. L. (2015). Influence of Land Use, Nutrients, and Geography on Microbial Communities and Fecal Indicator Abundance at Lake Michigan Beaches. Applied and Environmental Microbiology, 81(15), 4904–4913.
  • Cloutier, D. D. & Mclellan, S. L. (2017). Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches. Applied and Environmental Microbiology, 83, (4).
  • CONAMA - CONSELHO NACIONAL DO MEIO AMBIENTE. RESOLUÇÃO CONAMA no 274, de 29 de novembro de 2000. In: Diário Oficial da União no 18, de 25/01/2001. [s.l: s.n.]. p. 59–62.
  • Deng, D.; Zhang, N.; Mustapha, A.; Xu, D.; Wuliji, T.; Farley, M.; Yang, J.; Hua, B.; Liu, F. & Zheng, G. (2014). Differentiating enteric Escherichia coli from environmental bacteria through the putative glucosyltransferase gene (ycjM). Water Research, 61, 224–231.
  • Efstratiou, M. A. (2001). Managing Coastal Bathing Water Quality: The Contribution of Microbiology and Epidemiology. Marine Pollution Bulletin, 42(6), 424–431.
  • Ekklesia, E.; Shanahan, P. & Chua, L.H.C. & Eikaas, H.S. (2015). Temporal variation of faecal indicator bacteria in tropical urban storm drains. Water Research, 68, 171–181.
  • Farnham, D. J. & Lall, U. (2015). Predictive statistical models linking antecedent meteorological conditions and waterway bacterial contamination in urban waterways. Water Research, 76, 143–159.
  • Fiorentino, L. A.; Olascoaga, M. J. & Reniers, A. (2014). Analysis of water quality and circulation of four recreational Miami beaches through the use of Lagrangian Coherent Structures. Marine Pollution Bulletin, 83(1), 181–189.
  • Garfield, E. (1970). Citation Indexing for Studying Science. Nature, 227, 669–71.
  • Garfield, E. (1972). Citation Analysis as a Tool in Journal Evaluation. Science, 178, 471–479.
  • Goodwin, K.D.; Schriewer, A.; Jirik, A.; Curtis, K. & Crumpacker, A. (2017). Consideration of Natural Sources in a Bacteria TMDL—Lines of Evidence, Including Beach Microbial Source Tracking. Environmental Science & Technology, 51(14), 7775–7784.
  • Griffith, J.F.; Schiff, K.C.; Lyon, G.S. & Fuhrman, J.A. (2010). Microbiological water quality at non-human influenced reference beaches in southern California during wet weather. Marine Pollution Bulletin, 60(4), 500–508.
  • Heaney, C.D.; Exum, N.G.; Dufour, A.P.; Brenner, K.P.; Haugland, R.A.; Chern, E.; Schwab, K.J.; Love, D.C.; Serre, M.L.; Noble, R. & Wade, T.J. (2014). Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches. Science of The Total Environment, 497–498, 440–447.
  • Hughes, B.; Beale, D.J.; Dennis, P.G.; Cook, S. & Ahmed, W. (2017). Cross-Comparison of Human Wastewater-Associated Molecular Markers in Relation to Fecal Indicator Bacteria and Enteric Viruses in Recreational Beach Waters. Applied and Environmental Microbiology, 83(8).
  • Ivar do Sul, J. A. & Costa, M. F. (2013). Plastic pollution risks in an estuarine conservation unit. Journal of Coastal Research, 65, (Special Issue) 65, 48–53.
  • Jang, C.-S. & Liang, C.-P. (2018). Characterizing health risks associated with recreational swimming at Taiwanese beaches by using quantitative microbial risk assessment. Water Science and Technology, 77(2), 534–547.
  • Karydis, M.; Kitsiou, D. (2013). Marine water quality monitoring: A review. Marine Pollution Bulletin, 77(1–2), 23–36.
  • Kirs, M.; Kisand, V.; Wong, M.; Caffaro-Filho, R.A.; Moravcik, P.; Harwood, V.J.; Yoneyama, B. & Fujioka, R.S. (2017). Multiple lines of evidence to identify sewage as the cause of water quality impairment in an urbanized tropical watershed. Water Research, 116, 23–33.
  • Kitsiou, D. & Karydis, M. (2011). Coastal marine eutrophication assessment: A review on data analysis. Environment International, 37(4), 778–801.
  • Klein, L. & Dodds, R. (2017). Perceived effectiveness of Blue Flag certification as an environmental management tool along Ontario’s Great Lakes beaches. Ocean & Coastal Management, 141, 107–117.
  • Lam, J.T.; Lui, E.; Chau, S.; Kueh, C.S.W.; Yung, Y.-K. & Yam, W.C. (2014). Evaluation of real-time PCR for quantitative detection of Escherichia coli in beach water. Journal of Water and Health, 12(1), 51–56.
  • Li, X.; Harwood, V.J.; Nayak, B. & Weidhaas, J.L. (2016). Ultrafiltration and Microarray for Detection of Microbial Source Tracking Marker and Pathogen Genes in Riverine and Marine Systems. Applied and Environmental Microbiology, 82(5), 1625–1635.
  • Lušić, D.V.; Jozić, S.; Cenov, A.; Glad, M.; Bulić, M. & Lušić, D. (2016). Escherichia coli in marine water: Comparison of methods for the assessment of recreational bathing water samples. Marine Pollution Bulletin, 113(1–2), 438–443.
  • Lušić, D.V.; Kranjčević, L.; Maćešić, S.; Lušić, D.; Jozić, S.; Linšak, Ž.; Bilajac, L.; Grbčić, L. & Bilajac, N. (2017). Temporal variations analyses and predictive modeling of microbiological seawater quality. Water Research, 119, 160–170.
  • Mello, C. M. & Martins, V. (2016). Metodologia Científica (1a ed). Rio de Janeiro: Freitas Bastos Editora.
  • Monteiro, R. C. P.; Ivar do Sul, J. A. & Costa, M. F. (2018). Plastic pollution in islands of the Atlantic Ocean. Environmental Pollution, 238, 103–110.
  • Nevers, M.B.; Przybyla-Kelly, K.; Spoljaric, A.; Shively, D.; Whitman, R.L. & Byappanahalli, M.N. (2016). Freshwater wrack along Great Lakes coasts harbors Escherichia coli: Potential for bacterial transfer between watershed environments. Journal of Great Lakes Research, 42(4), 760–767.
  • Oun, A.; Yin, Z.; Munir, M. & Xagoraraki, I. (2017). Microbial pollution characterization of water and sediment at two beaches in Saginaw Bay, Michigan. Journal of Great Lakes Research, 43(3), 64–72.
  • Pereira, S.P.; Rosman, P.C.C.; Alvarez, C.; Schetini, C.A.F.; Souza, R.O. & Vieira, R.H.S.F. (2015). Modeling of coastal water contamination in Fortaleza (Northeastern Brazil). Water Science and Technology, 72(6), 928–936.
  • Pond, K. (2005). Water Recreation and Disease. Plausibility of Associated Infections: Acute Effects, Sequelae and Mortality (Who Emerging Issues in Water & Infectious Disease). Intl Water Assn.
  • Praveena, S.M.; Pauzi, N.M.; Hamdan, M. & Sham, S.M. (2015). Assessment of swimming associated health effects in marine bathing beach: An example from Morib beach (Malaysia). Marine Pollution Bulletin, 92(1–2), 222–226.
  • Praveena, S.M.; Shamira, S.S.; Ismail, S.N.S. & Aris, A.Z. (2016). Fecal indicator bacteria in tropical beach sand: Baseline findings from Port Dickson coastline, Strait of Malacca (Malaysia). Marine Pollution Bulletin, 110(1), 609–612.
  • Przybyla-Kelly, K.; Nevers, M.B.; Breitenbach, C. & Whitman, R.L. (2013). Recreational water quality response to a filtering barrier at a Great Lakes beach. Journal of Environmental Management, 129, 635–641.
  • Quilliam, R. S.; Jamieson, J. & Oliver, D. M. (2014). Seaweeds and plastic debris can influence the survival of faecal indicator organisms in beach environments. Marine Pollution Bulletin, 84(1–2), 201–207.
  • Rothenheber, D. & Jones, S. (2018). Enterococcal Concentrations in a Coastal Ecosystem Are a Function of Fecal Source Input, Environmental Conditions, and Environmental Sources. Applied and Environmental Microbiology, 84(17).
  • Shibata, T.; Solo-Gabriele, H.M.; Fleming, L.E. & Elmir, S. (2004). Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Research, 38(13), 3119–3131.
  • Silva, J. A. (2001). Cientometria: A Métrica da Ciência. Paideia, 11(20), 5–10.
  • Sousa, S.H.M.; Ferreira, P.A.L.; Martins, M.V.A.; Siegle, E.; Amaral, P.G.C.; Figueira, R.C.L.; Yamashita, C.; Rodrigues, A.R. & Mahiques, M.M. (2016). Spatial sediment variability in a tropical tide dominated estuary: Sources and drivers. Journal of South American Earth Sciences, 72, 115–125.
  • Souza, R.V.; Campos, C.J.A.; Garbossa, L.H.P. & Seiffert, W.Q. (2018). Developing, cross-validating and applying regression models to predict the concentrations of faecal indicator organisms in coastal waters under different environmental scenarios. Science of The Total Environment, 630, 20–31.
  • Staley, Z.R.; Boyd, R.J.; Shum, P. & Edge, T.A. (2018). Microbial Source Tracking Using Quantitative and Digital PCR To Identify Sources of Fecal Contamination in Stormwater, River Water, and Beach Water in a Great Lakes Area of Concern. Applied and Environmental Microbiology, 84(20).
  • Suciu, M.C.; Tavares, D.C.; Costa, L.L.; Silva, M.C.L. & Zalmon, I.R. (2017). Evaluation of environmental quality of sandy beaches in southeastern Brazil. Marine Pollution Bulletin, 119(2), 133–142.
  • Thoe, W.; Gold, M.; Griesbach, A.; Grimmer, M.; Taggart, M.L. & Boehm, A.B. (2014). Predicting water quality at Santa Monica Beach: Evaluation of five different models for public notification of unsafe swimming conditions. Water Research, 67, 105–117.
  • Thoe, W.; Lee, O.H.K.; Leung, K.F.; Lee, T.; Ashbolt, N.J.; Yang, R.R. & Chui, S.H.K. (2018). Twenty five years of beach monitoring in Hong Kong: A re-examination of the beach water quality classification scheme from a comparative and global perspective. Marine Pollution Bulletin, 131, 793–803.
  • Tortora, G. J.; Funke, B. R. & Case, C. L. (2016). Microbiologia (12a ed.). Artmed, 2016.
  • USEPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. (2002). Method 1600: Enterococci in Water by Membrane Filtration Using membrane - Enterococcus Indoxyl-$-D-Glucoside Agar (mEI). Washington, DC: U.S. Environmental Protection Agency.
  • USEPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. (2012). Recreational Water Quality Criteria. Washington, DC: U.S. Environmental Protection Agency.
  • USEPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. (2014). Water Quality Standards Handbook. Washington, DC: U.S. Environmental Protection Agency.
  • Wanjugi, P.; Sivaganesan, M.; Korajkic, A.; McMinn, B.; Kelty, C.A.; Rhodes, E.; Cyterski, M.; Zepp, R.; Oshima, K.; Stachler, E.; Kinzelman, J.; Kurdas, S.R.; Citriglia, M.; Hsu, F.-C.; Acrey, B. & Shanks, O.C. (2018). Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters. Water Research, 140, 200–210.
  • Weiskerger, C.J.; Brandão, J.; Ahmed, W.; Aslan, A.; Avolio, L.; Badgley, B.D.; Boehm, A.B.; Edge, T.A.; Fleisher, J.M.; Heaney, C.D.; Jordao, L.; Kinzelman, J.L.; Klaus, J.S.; Kleinheinz, G.T.; Meriläinen, P.; Nshimyimana, J.P.; Phanikumar, M.S.; Piggot, A.M.; Pitkänen, T.; Robinson, C.; Sadowsky, M.J.; Staley, C.; Staley, Z.R.; Symonds, E.M.; Vogel, L.J.; Yamahara, K.M.; Whitman, R.L.; Solo-Gabriele, H.M. & Harwood, V.J. (2019). Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Research, 162, 456–470.
  • Weiskerger, C. J. & Whitman, R. L. (2018). Monitoring E. coli in a changing beachscape. Science of The Total Environment, 619–620, 1236–1246.
  • WHO - WORLD HEALTH ORGANIZATION. (2003). Guidelines for Safe Recreational Water Environments: Coastal and Fresh Waters. Geneva: WHO Library Cataloguing in Publication Data.
  • WHO - WORLD HEALTH ORGANIZATION. (2011). Guidelines for Drinking-water Quality. Geneva: WHO Library Cataloguing in Publication Data.
  • WHO - WORLD HEALTH ORGANIZATION. (2014). Progress on sanitation and drinking water - 2014 update. WHO Library Cataloguing in Publication Data.
  • Zhang, J.; Qiu, H.; Li, X.; Niu, J.; Nevers, M.B.; Hu, X. & Phanikumar, M.S. (2018). Real-Time Nowcasting of Microbiological Water Quality at Recreational Beaches: A Wavelet and Artificial Neural Network-Based Hybrid Modeling Approach. Environmental Science & Technology, 52(15), 8446–8455.
  • Zhang, W.; Wang, J.; Fan, J.; Gao, D. & Ju, H. (2013). Effects of rainfall on microbial water quality on Qingdao No. 1 Bathing Beach, China. Marine Pollution Bulletin, 66(1–2), 185–190.
  • Zuza-Alves, D.L.; Medeiros, S.S.T.Q.; Souza, L.B.F.C.; Silva-Rocha, W.P.; Francisco, E.C.; Araújo, M.C.B.; Lima-Neto, R.G.; Neves, R.P.; Melo, A.S.A. & Chaves, G.M. (2016). Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil. Frontiers in Microbiology, 7.